• 0

    用户访问量

  • 0

    注册用户数

  • 0

    在线视频观看人次

  • 0

    在线实验人次

知识图谱的表示方法是

作者:云创智学|发布时间:2021-12-10 10:20:19.0|来源:云创智学

知识图谱的表示方法是

以深度学习为代表的以深度学习为代表的表示学习技术取得了重要的进展,可以将实体的语义信息表示为稠密低维实值向量,进而在低维空间中高效计算实体、关系及其之间的复杂语义关联,对知识库的构建、推理、融合以及应用均具有重要的意义。


1、代表模型

1)、距离模型:

距离模型提出了知识库中实体以及关系的结构化表示方法SE,其基本思想是:首先将实体用向量进行表示,然后通过关系矩阵将实体投影到与实体关系对的向量空间中,最后通过计算投影向量之间的距离来判断实体间已存在的关系的置信度。

2)、单层神经网络模型:

针对上述提到的距离模型中的缺陷,提出了采用单层神经网络的非线性模型SLM ,模型为知识库中每个三元组(h,r,t) 定义了一个评价函数。单层神经网络模型的非线性操作虽然能够进一步刻画实体在关系下的语义相关性,但在计算开销上却大大增加。

3)、双线性模型:

双线性模型又叫隐变量模型LFM,主要是通过基于实体间关系的双线性变换来刻画实体在关系下的语义相关性。模型不仅形式简单、易于计算,而且还能够有效刻画实体间的协同性。

4)、神经张量模型

在不同的维度下,将实体联系起来,表示实体间复杂的语义联系。神经张量模型在构建实体的向量表示时,是将该实体中的所有单词的向量取平均值,这样一方面可以重复使用单词向量构建实体,另一方面将有利于增强低维向量的稠密程度以及实体与关系的语义计算。

5)、矩阵分解模型

通过矩阵分解的方式可得到低维的向量表示,故不少研究者提出可采用该方式进行知识表示学习,知识库中的三元组集合被表示为一个三阶张量,如果该三元组存在,张量中对应位置的元素被置1,否则置为0。

6)、翻译模型

将知识库中实体之间的关系看成是从实体间的某种平移,并用向量表示。该模型的参数较少,计算的复杂度显著降低。与此同时,翻译模型在大规模稀疏知识库上也同样具有较好的性能和可扩展性。


2、复杂关系模型

   知识库中的实体关系类型也可分为1-to-1、1-to-N、N-to-1、N-to-N4种类型,而复杂关系主要指的是1-to-N、N-to-1、N-to-N的3种关系类型。


1)、TransH模型

TransH模型尝试通过不同的形式表示不同关系中的实体结构,对于同一个实体而言,它在不同的关系下也扮演着不同的角色。TransH使不同的实体在不同的关系下拥有了不同的表示形式,但由于实体向量被投影到了关系的语义空间中,故它们具有相同的维度

2)、TransR模型

由于实体、关系是不同的对象,不同的关系所关注的实体的属性也不尽相同,将它们映射到同一个语义空间,在一定程度上就限制了模型的表达能力。模型首先将知识库中的每个三元组(h, r,t)的头实体与尾实体向关系空间中投影,然后希望满足给定的约束关系,最后计算损失函数。

3)、TransD模型

之前的TransR模型使它们被同一个投影矩阵进行映射,在一定程度上就限制了模型的表达能力。除此之外,将实体映射到关系空间体现的是从实体到关系的语义联系,而TransR模型中提出的投影矩阵仅考虑了不同的关系类型,而忽视了实体与关系之间的交互。因此, TransD模型分别定义了头实体与尾实体在关系空间上的投影矩阵。

4)、TransG模型

TransG模型认为一种关系可能会对应多种语义,而每一种语义都可以用一个高斯分布表示。TransG模型考虑到了关系r 的不同语义,使用高斯混合模型来描述知识库中每个三元组(h,r,t)头实体与尾实体之间的关系,具有较高的实体区分。

联系方式
企业微信