• 0

    用户访问量

  • 0

    注册用户数

  • 0

    在线视频观看人次

  • 0

    在线实验人次

需求背景及采用的大数据分析方法

作者:云创智学|发布时间:2022-03-14 09:46:19.0|来源:云创智学

需求背景及采用的大数据分析方法

在变压器运行的运行周期中,油温状态是影响变压器运行和负载能力的重要因素。所以变压器油温异常的甄别对变压器及线路的安全运行具有很高的实用价值。为了及时发现变压器油温异常,就需要对变压器平时正常运行时油温的状况有清晰的了解并作为比对基准。


采用大数据的方法,通过聚类分析,挖掘出变压器正常运行的油温分布状况,为及时发现油温异常提供了判断依据。


把正常运行油温分成几个区间段,分析各区间段的油温出现次数分布,并计算出该区间段的油温次数分布中心点。而根据中心点的偏离程度即阈值作为设备异常的预判是有较大参考价值的。

采用聚类K-Means分析方法

在Spark集群上实现


联系方式
企业微信