传统卷积神经网络的卷积层采用线性滤波器与非线性激活函数,一种改进的方法在卷积层使用多层感知机模型作为微型神经网络,通过在输入图像中滑动微型神经网络来得到特征图,该方法能够增加神经网络的表示能力,被称为Network in network。
用户访问量
注册用户数
在线视频观看人次
在线实验人次
传统卷积神经网络的卷积层采用线性滤波器与非线性激活函数,一种改进的方法在卷积层使用多层感知机模型作为微型神经网络,通过在输入图像中滑动微型神经网络来得到特征图,该方法能够增加神经网络的表示能力,被称为Network in network。
¥ 5999
·难
·20
¥ 9999
·难
·1
¥ 7999
·难
·8
¥ 199
·易
·31
¥ 899
·适中
·15
¥ 1688
·适中
·198
¥ 28000
·难
·169
¥ 199
·偏易
·3589
¥ 100000
·难
·171
¥ 998
·难
·9
¥ 1899
·难
·15
¥ 199
·易
·342
¥ 5999
·适中
·30
¥ 6999
·难
·18
¥ 5999
·难
·15
¥ 3999
·难
·15
¥ 2999
·难
·57