1、传统数据仓库
企业把数据分成内部数据和外部数据,内部数据包括OLTP交易系统和OLAP分析系统的数据。企业首先需要将这些数据集中起来,经过转换放到这类数据库中,然后在数据库上对数据进行加工,建立各种主题模型,再提供报表分析业务。
2、数据集市
数据集市一般是用于某一类功能需求的数据仓库的简单模式,往往是由一些业务部门构建,也可以构建在企业数据仓库上。一般来说数据集市的数据源较少,但往往对数据分析的延时有很高的要求,并需要和各种报表工具有很好的对接。
3、关联发现数据仓库
在一些场景下,企业可能不知道数据的内联规则,而是需要通过数据挖掘的方式找出数据之间的关联关系,隐藏的联系和模式等,从而挖掘出数据的价值。很多行业的新业务都有这方面的需求,如金融行业的风险控制,反欺诈等业务。上下文无关联的数据仓库一般需要在架构设计上支持数据挖掘能力,并提供通用的算法接口来操作数据。
4、实时处理数据仓库
随着业务的发展,企业客户需要对实时的数据做一些商业分析,譬如零售行业需要根据实时的销售数据来调整库存和生产计划。这类行业用户对数据的实时性要求很高,传统的离线批处理的方式不能满足需求,因此需要构建实时处理的数据仓库。数据可以通过各种方式完成采集,然后数据仓库可以在指定的时间限期内对数据进行处理和统计分析等,再将数据存入数据仓库以满足一些其他业务的需求。