2006年Hinton等人提出深度学习的概念,该方法基于深度置信网络提出非监督逐层训练的算法,为解决深层结构相关的优化难题带来了希望,掀起了深度学习在学术界和工业界的浪潮。
随着CPU和GPU计算能力的大幅提升,深度学习拥有了的更高效的硬件平台作为支撑。大数据时代的海量数据解决了早期神经网络由于训练样本不足出现的过拟合、泛化能力差等问题。因此,大数据需要深度学习,深度学习的发展又需要大数据的支撑。
在未来几年,深度学习将会被广泛应用于大数据的预测,而不是停留在浅层模型上,这将推动“大数据+深度模型”时代的来临,以及人工智能和人机交互的前进步伐。