TensorFlow实现了本地和分布式两种接口机制。本地实现机制的client端、master端和worker均运行在同一个机器中;分布式实现机制它与本地实现的代码基本相同,但是client端、master端和worker进程一般运行在不同的机器中,所包含的不同任务由一个集群调度系统进行管理。
具备如下优点:
1.多样化部署;
2.可被基于梯度的机器学习算法借鉴;
3.灵活的Python接口;
4.可映射到不同硬件平台;
5.支持分布式训练。
用户访问量
注册用户数
在线视频观看人次
在线实验人次
TensorFlow实现了本地和分布式两种接口机制。本地实现机制的client端、master端和worker均运行在同一个机器中;分布式实现机制它与本地实现的代码基本相同,但是client端、master端和worker进程一般运行在不同的机器中,所包含的不同任务由一个集群调度系统进行管理。
具备如下优点:
1.多样化部署;
2.可被基于梯度的机器学习算法借鉴;
3.灵活的Python接口;
4.可映射到不同硬件平台;
5.支持分布式训练。
¥ 5999
·难
·20
¥ 9999
·难
·1
¥ 7999
·难
·8
¥ 199
·易
·31
¥ 899
·适中
·15
¥ 1688
·适中
·198
¥ 28000
·难
·169
¥ 199
·偏易
·3589
¥ 100000
·难
·171
¥ 998
·难
·9
¥ 1899
·难
·15
¥ 199
·易
·342
¥ 5999
·适中
·30
¥ 6999
·难
·18
¥ 5999
·难
·15
¥ 3999
·难
·15
¥ 2999
·难
·57